Wittgenstein's Diagonal Argument: A Variation on Cantor and Turing

  • Juliet Floyd Boston University, United States of America
  • Kurt Wischin Universidad de Granada, Spain
Keywords: Common Sense, Formal System, Turing Machine, Ordinary Language, Philosophical Discussion

Abstract

Turing was a philosopher of logic and mathematics, as well as a mathematician. His work throughout his life owed much to the Cambridge milieu in which he was educated and to which he returned throughout his life. A rich and distinctive tradition discussing how the notion of “common sense” relates to the foundations of logic was being developed during Turing’s undergraduate days, most intensively by Wittgenstein, whose exchanges with Russell, Ramsey, Sraffa, Hardy, Littlewood and others formed part of the backdrop which shaped Turing’s work. Beginning with a Moral Sciences Club talk in 1933, Turing developed an “anthropological” approach to the foundations of logic, influenced by Wittgenstein, in which “common sense” plays a foundational role. This may be seen not only in “On Computable Numbers” (1936/7) and Turing’s dissertation (written 1938, see (1939)), but in his exchanges with Wittgenstein in 1939 and in two later papers, “The Reform of Mathematical Phraseology and Notation” (1944/5) and “Solvable and Unsolvable Problems” (1954).

Author Biographies

Juliet Floyd, Boston University, United States of America

Juliet Floyd began her career in 1990 teaching at the City College of New York and CUNY (1992), where she became the assistant executive director of the graduate program. She moved to Boston University in 1995 as Visiting Assistant Professor, joining the Philosophy Department there as Associate Professor the following year. She is Professor of Philosophy in Boston since 2006. After obtaining a Philosophy B.A. at Wellesley College with Highest Honors and studying at the London School of Economics and Political Science (1978–1982), she earned her Philosophy MA (“Kant’s Sensus Communis: Regulative and Constitutive”, 1984) and PhD (“The Rule of the Mathematical: Wittgenstein’s Later Discussions”, 1990) at Harvard University. Her research revolves, among other topics, around the History and Development of Analytic and Twentieth Century Philosophy, Philosophy of Logic and Mathematics, Philosophy of Language, Formal and Traditional Epistemology, Theories of Truth, Modern Philosophy (Kant), Aesthetics, Wittgenstein, Pragmatism, History and Philosophy of Science, especially Logic and Mathematics and Philosophy of Emerging Computational Technologies. She was awarded numerous Fellowships and Major Grants. She edited together with S. Shieh the book Future Pasts: Perspectives on the Place of the Analytic Tradition in Twentieth–Century Philosophy (Oxford University Press, 2001), together with J. E. Katz Philosophy of Emerging Media: Understanding, Appreciation, Application (Oxford University Press, 2016), and with A. Bokulich Philosophical Explorations of the Legacy of Alan Turing – Turing 100, Boston Studies in the Philosophy and History of Science Vol. 324 (Springer Verlag, 2017). She contributed with chapters to more than fifty books and published numerous articles in a wide variety of philosophical Journals.

Kurt Wischin, Universidad de Granada, Spain

Kurt Wischin is currently CPhil at the University of Granada, Spain. He got in touch with philosophy first at the University of Vienna in the 1970s, obtained a BA in Philosophy from the University of Queretaro, Mexico and an MPhil at the National Autonomous University of Mexico, Mexico. His main interest centres in Philosophy of Language and early Analytical Philosophy, in particular, Frege and Wittgenstein. He has published articles and translations in some anthologies and academic reviews.

References

Church, Alonzo (1936). “An unsolvable problem of elementary number theory”. American Joumal of Mathematics, vol. 58, no. 2: 345–363. doi: https://doi.org/10.2307/2371045

Copeland, Brian J. (ed.). (2004). The Essential Turing: The ideas that gave birth to the computer age. Oxford: Clarendon Press.

Dreben, Burton, y Juliet Floyd. (1991). “Tautology: How not to use a word”. Synthese vol. 87, no. 1: pp. 23–50. doi: https://doi.org/10.1007/BF00485329

Floyd, Juliet (2001). Prose versus proof: “Wittgenstein on Gödel, Tarski and Truth”. Philosophia Mathematica, vol. 9, no. 3: pp. 901–928. doi: https://doi.org/10.1093/philmat/9.3.280

Fogelin, Robert J. (1987). Wittgenstein. London/New York: Routledge & K. Paul.

Gandy, Robin O. (1988). “The confluence of ideas in 1936”. In: The universal Turing machine: A halfcentury survey, ed. R. Herken, pp. 55–112. New York: Oxford University Press.

Gefwert, Christoffer (1998). Wittgenstein on mathematics, minds and mental machines. Burlington: Ashgate Publishing.

Gödel, Kurt (1986). Kurt Gödel collected works. Volume I: Publications 1929–1936. New York: Oxford University Press.

Gödel, Kurt (1990). Kurt Gödel collected works. Volume II: Publications 1938–1974. New York: Oxford University Press.

Hodges, Andrew (1983). Alan Turing the enigma of intelligence. New York: Touchstone.

Hodges, Wilfrid (1998). “An editor recalls some hopeless papers”. Bulletin of Symbolic Logic, vol. 4, no. 1 : pp. 1–16. doi: https://doi.org/10.2307/421003

Kennedy, Juliette (unpublished). Gödel’s quest for decidability: The method of formal systems; The method of informal rigor.

Kreisel, Georg (1950). “Note on arithmetic models for consistent formulae of the predicate calculus”. Fundamenta Mathematicae 37: pp. 265–285. doi: https://doi.org/10.4064/fm-37-1-265-285

Kripke, Saul A. (1982). Wittgenstein on rules and private language: An elementary exposition. Cambridge: Harvard University Press.

Marion, Mathieu (2011). “Wittgenstein on the surveyability of proofs”. In The Oxford handbook to Wittgenstein, ed. M. McGinn. New York/Oxford: Oxford University Press. doi: https://doi.org/10.1093/oxfordhb/9780199287505.003.0008

Martin–Löf, Per (1984). Intuitionistic type theory. Napoli: Bibliopolis.

Martin–Löf, Per (1996). “On the meanings of the logical constants and the justifications of the logical laws”. Nordic Journal of Philosophical Logic, vol. 1 no. 1: pp. 11–60.

McGuinness, Brian (ed.). (2008). Wittgenstein in Cambridge: Letters and documents, 1911–1951. Malden/Oxford: Blackwell. doi: https://doi.org/10.1002/9781444301243

Mühlhölzer, Felix (2010). Braucht die Mathematik eine Grundlegung? Ein Kommentar des Teils Ill von Wittgensteins Bemerkungen iiber die Grundlagen der Mathematik. Frankfurt am Main: Vittorio Klostermann.

Petzold, Charles (2008). The annotated Turing: A guided tour through Alan Turing’s historic paper on computability and the Turing machine. Indianapolis: Wiley Publishing, Inc.

Quine, Willard V. (1937). “New foundations for mathematical logic”. American Mathematical Monthly 44: pp. 70–80. doi: https://doi.org/10.1080/00029890.1937.11987928

Quine, Willard V. (1953, 1980). From a logical point of view. Cambridge: Harvard University Press.

Shanker, Stuart G. (1987). “Wittgenstein versus Turing on the nature of Church’s thesis”. Notre Dame Journal of Formal Logic, vol. 28, no. 4: pp. 615–649. doi: https://doi.org/10.1305/ndjfl/1093637650

Shanker, Stuart G. (1998). Wittgenstein’s remarks on the foundations of AI. New York: Routledge.

Sieg, Wilfried (1994). “Mechanical procedures and mathematical experience”. In Mathematics and mind, ed. A. George, 91–117. New York/Oxford: Oxford University Press.

Sieg, Wilfried (2006a). “Gödel on computability”. Philosophia Mathematica, vol. 14, no. 2: pp. 189–207. doi: https://doi.org/10.1093/philmat/nkj005

Sieg, Wilfried (2006b). “Step by recursive step: Church’s analysis of effective calculability”. In Church’s thesis after 70 years, ed. A. Olszewski, J. Wolenski and R. Janusz, pp. 456–485. Frankfurt/Paris/Ebikon/Lancaster/New Brunswick: Ontos Verlag.

Sieg, Wilfried (2008). “On computability”. In Handbook of the philosophy of science: Philosophy of mathematics, ed. A. Irvine pp. 535-630. Amsterdam: Elsevier BY. doi: https://doi.org/10.1016/B978-0-444-51555-1.50017-1

Stenius, Erik (1970). “Semantic antinomies and the theory of well–formed rules”. Theoria, vol. 36, no. 2: pp. 142–160. doi: https://doi.org/10.1111/j.1755-2567.1970.tb00416.x

Turing, A.M. (1937a). “On calculable numbers, with an application to the Entscheidungsproblem”. Proceedings of the London Mathematical Society vol. s2– 42, no. 1: pp. 230–265. doi: https://doi.org/10.1112/plms/s2-42.1.230

Turing, A.M. (1937b). “On calculable numbers, with an application to the Entscheidungsproblem. A correction”. Proceedings of the London Mathematical Society vol. s2-43, no. 1: pp. 544–546. doi: https://doi.org/10.1112/plms/s2-43.6.544

Turing, A.M. (1937c). Letter to Ethel Sarah Turing. Cambridge, U.K.: King’s College Archives, K/1/54, February 11, 1937.

Turing, A.M. (1937d). Correspondence with Paul Bernays. Zürich: Eidgenossische Technische Hochschule Zürich/Swiss Federal Institute of Technology Zürich, Bibliothek.

Turing, A.M. (1950). “Computing machinery and intelligence”. Mind, vol. 59, no. 236: pp. 433–460. doi: https://doi.org/10.1093/mind/LIX.236.433

Turing, A.M. (1954). “Solvable and unsolvable problems”. Science News, vol. 20, no. 31: pp. 7–23.

Watson, A.G.D. (1938). “Mathematics and its foundations”. Mind, vol. 47, no. 188: pp. 440–451. doi: https://doi.org/10.1093/mind/XLVII.188.440

Webb, Judson C. (1990) “Remark 3, introductory note to Gödel (1972a)”. In Kurt Gödel collected works. Volume Il: Publications 1938–1974, eds. S. Feferman, et al., pp. 281–304. New York: Oxford University Press.

Wittgenstein, Ludwig (1970). Zettel [Z]. Berkeley: University of California Press.

Wittgenstein, Ludwig (1978). Remarks on the foundations of mathematics. Cambridge: MIT Press.

Wittgenstein, Ludwig (1980). Wittgenstein’s lectures, Cambridge 1930–32, from the notes of John King and Desmond Lee [DL]. Oxford: Blackwell.

Wittgenstein, Ludwig (1999). The published works of Ludwig Wittgenstein [CD–Rom], Charlottesville, VA/Oxford: Intelex Corporation. Oxford University Press.

Wittgenstein, Ludwig (2004). Ludwig Wittgenstein: Briefwechsel [CD–Rom, Innsbrucker elektronische Ausgabe], ed. M. Seekircher, B. McGuinness, A. Unterkircher, A. Janik and W. Methlagl. Charlottesville, VA: Intelex Corporation.

Wittgenstein, Ludwig, and G.H.Y. Wright et al. (1980). Remarks on the philosophy of psychology, vol. 1[RPP I]. Chicago/Oxford: University of Chicago Press/B. Blackwell.

Wittgenstein, Ludwig (1989). Wittgenstein’s lectures on the foundations of mathematics: Cambridge, 1939, ed. C. Diamond. Chicago: University of Chicago Press. Wright, C. (2001). Rails to infinity: Essays on themes from Wittgenstein’s philosophical investigations. Cambridge: Harvard University Press. doi: https://doi.org/10.7208/chicago/9780226308609.001.0001

Published
2019-06-30
How to Cite
[1]
Floyd, J. and Wischin, K. 2019. Wittgenstein’s Diagonal Argument: A Variation on Cantor and Turing. Disputatio. 8, 9 (Jun. 2019), 593-644. DOI:https://doi.org/10.5281/zenodo.3568216.

Most read articles by the same author(s)

1 2 > >>