Alternativas de desarrollo sostenible: polímeros a partir de desechos orgánicos

  • María José Valarezo Ulloa Universidad Nacional de Loja, Ecuador
  • María Gabriela Punín Burneo Universidad Técnica Particular de Loja, Ecuador
Palabras clave: Almidón, Banano, Biopolímeros, Cortezas, Desechos, Fibra

Resumen

En la presente investigación se ha elaborado un biopolímero resistente, flexible y elástico, con características similares a las de un plástico, a partir de materiales orgánicos de desecho como lo son las cáscaras internas de la corteza de yuca (Manihot esculenta) y el bagazo de banano (Musa paradisiaca). Se utilizaron como plastificantes agua y glicerina, los cuales le brindaron plasticidad y elasticidad al material; y como modificador químico ácido acético, agente que modifica su carácter hidrofílico. El bagazo de banano fue tratado con hidróxido de sodio para la obtención de fibras, después de la eliminación de lignina. El biopolímero obtenido está constituido de 19,36% de almidón, 6,31% de glicerina, 74,08% de agua y 0,25% de ácido acético. Presentó una densidad de 6,44 g/cm3, 0,0 mm de penetración y 25,3% de aumento de peso por absorción de agua. El porcentaje óptimo de fibra añadido fue de 40%p. El material elaborado, brinda una alternativa ecológica para la elaboración de utensilios de uso diario y artículos decorativos.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

María José Valarezo Ulloa , Universidad Nacional de Loja, Ecuador

María José Valarezo Ulloa es Docente y Directora del Laboratorio de Análisis Químico de de la Universidad Nacional de Loja. Doctora en Ingeniería de Materiales-Instituto por el Politécnico Nacional IPN-México. Sus áreas investigación se centran en los biomateriales polimericos para la medicina, construcción, industria y agricultura. Ha generado varias patentes de invención en biopolímeros, registradas en el IEPI. Ganadora del 1er Premio a la Mejor Invención Innovadora otorgada por el CEDIA, Expositora en TEDx-Ecuador y Ganadora del Gold Medal Award – Taiwan Innotech Expo 2022. Ha participado en congresos nacionales e internacionales como expositora en los temas de polimeros y biopolímeros para la industria y la dosificación de fármacos.

María Gabriela Punín Burneo, Universidad Técnica Particular de Loja, Ecuador

María Gabriela Punín es Docente en el Departamento de Filosofía, Arte y Humanidades y Directora de la Maestría en Pedagogía de las Artes de la Universidad Técnica Particular de Loja, Ecuador. Ph.D en Arte y Diseño por la Universidad Nacional Autónoma de México. Coordinadora del grupo de investigación Arte y Entorno. Ha sido parte de más de 30 exposiciones artísticas en Mexico, Chile, Perú, Londres, Ecuador. Investigadora en proyectos de nuevos materiales y bioarte. Generadora de Patentes de Invención en Biopolimero – IEPI. Trabajó en el Centro de Arte Contemporáneo de Quito.

Referencias

Abolibda, Tariq .. Z. 2015. “Starch Based Bio-Plastics”.

AGROCALIDAD. 2013. “Manual de Aplicabilidad de Buenas practicas Agrícolas de banano”. Agrocalidad, 1–95.

Alcázar-Alay, Sylvia Carolina y Maria Angela Almeida Meireles. 2015. “Physicochemical properties, modifications and applications of starches from different botanical sources”. Food Science and Technology 35(2):215–36.

Aristizábal, Johanna y Teresa Sánchez. 2007. Guía técnica para producción y análisis de almidón de yuca. Vol. 163.

Barbosa, J., H. Albano, C. P. Silva, y P. Teixeira. 2019. “Microbiological contamination of reusable plastic bags for food transportation”. Food Control 99(December 2018):158–63.

Burneo, María Gabriela Punín. 2012. “Process and Extraction of Natural Fibers in the Artistic Application”. Journal of Materials Sciense and Engineering 2(2):238–47.

CFN. 2017. “Banano Y Plátanos”. Subgerencia de Análisis e Información 1–21.

Cordier, Mateo y Takuro Uehara. 2019. “How much innovation is needed to protect the ocean from plastic contamination?” Science of the Total Environment 670:789–99.

Eriksen, M. K., K. Pivnenko, M. E. Olsson, y T. F. Astrup. 2018. “Contamination in plastic recycling: Influence of metals on the quality of reprocessed plastic”. Waste Management 79:595–606.

Eugene, Stevens. 2002. Green plastics: An introductio to the New Science of Biodegradable Plastics.

Gonzabay, Roberto. 1385. “Cultivo del banano en el Ecuador”. Le Bananier, Champion J. 263.

Huang, Xiangning, Stephane Andry, Jessica Yaputri, Devin Kelly, David A. Ladner, y Andrew J. Whelton. 2017. “Crude oil contamination of plastic and copper drinking water pipes”. Journal of Hazardous Materials 339:385–94.

Institute for Bioplastics and Biocomposites. 2016. Biopolymers facts and statistics 2015. 3a ed. Germany: Institute for Bioplastics ans Biocomposites.

Janarthanan, P., A. K. Veeramachineni, y X. J. Loh. 2016. “Biodegradable Polysaccharides”. Reference Module in Materials Science and Materials Engineering 1–12.

Jiliana, Meneses, Corrales Catalina, y Valencia Marco. 2007. “Síntesis y Caracterización de un polímero biodegradable a partir del almidón de yuca”. Revista EIA 8(1794–1237):57–67.

Kühn, Susanne, Jan A. van Franeker, Anastasia M. O’Donoghue, Ailynn Swiers, Marrit Starkenburg, Bernike van Werven, Edwin Foekema, Enya Hermsen, Marion Egelkraut-Holtus, y Han Lindeboom. 2019. “Details of plastic ingestion and fibre contamination in North Sea fishes”. Environmental Pollution (xxxx):113569.

NORMA ASTM. Standard for determining moisture in plastics. ASTM 6980. Unite States.2009.

NORMA ASTM Standard Test Methods for Density and Specific Gravity (Relative Density) of plastics by displacement. ASTM D-792. United States.2008.

NORMA ASTM Standard Test Method for Water Absorption of Plastics. ASTM D570. United States .1998.

NORMA ASTM Standard Test Method for Slow penetration resistance on plastics. ASTM F1306. United States. 2008.

Muñóz, Xavier. 2017. “La yuca en el Ecuador: su origen y diversidad genética”. El Ministerio del Agro, 1–18.

Ojogbo, Ewomazino, Emmanuel O. Ogunsona, y Tizazu H. Mekonnen. 2019. “Chemical and physical modifications of starch for renewable polymeric materials”. Materials Today Sustainability 100028.

ONU Medio Ambiente. 2018. “EL ESTADO DE LOS PLÁSTICOS Perspectiva del día mundial del medio ambiente 2018”. 20.

Peñarreta, Oscar. 2008. “Revisión de la modificación química del almidón con ácidos orgánicos A review of using organic acids to chemically modify starch”. Revista Ingeniería E Investigación 28(3):47–52.

Ragaert, Kim, Laurens Delva, y Kevin Van Geem. 2017. “Mechanical and chemical recycling of solid plastic waste”. Waste Management 69:24–58.

Rodríguez, Andrea. 2009. “Estudio de factibilidad para la producción y comercialización de banano (Musa sp.), variedad Gran enano Cavendish, en Quevedo, provincia de Los Ríos”. 63.

La Rosa, A. D. 2016. Life cycle assessment of biopolymers. Elsevier Ltd.

Ruimin, Qi, Davey L. Jones, Li Zhen, Liu Qin, y Yan Changrong. 2019. “Behavior of microplastics and plastic film residues in the soil environment: A critical review”. Science of The Total Environment 134722.

Ruiz Avilés, Gladys, Carolina Montoya Mesa, y Marco Paniagua Villa. 2009. “Degradabilidad de un polímero de almidón de yuca.” Revista EIA (12):67–78.

RUTENBERG, MORTON W. y DANIEL SOLAREK. 1984. “Starch Derivatives: Production and Uses”. Starch: Chemistry and Technology 311–88.

SEO BirdLife y Ecoembes. 2019. “Impacto del abandono del plástico en la naturaleza”. 24.

Septianto, Felix y Michael S. W. Lee. 2019. “Emotional responses to plastic waste: Matching image and message framing in encouraging consumers to reduce plastic consumption”. Australasian Marketing Journal (xxxx):1–12.

Shankar, Shiv y Jong-Whan Rhim. 2018. Bionanocomposite Films for Food Packaging Applications. Elsevier.

Singh, Baljit y Nisha Sharma. 2008. “Mechanistic implications of plastic degradation”. Polymer Degradation and Stability 93(3):561–84.

Telis, Vânia Regina Nicoletti. 2012. “An introduction to biopolymer applications in food engineering”. Biopolymer Engineering in Food Processing 1–15.

Valarezo, María José. 2012. “La Universidad Católica de Loja Desarrollo de biolímeros a partir de almidón de corteza de yuca”. Universidad Técnica Particular de Loja.

Valero-Valdivieso, Manuel Fernando, Yamileth Ortegón, y Yomaira Uscategui. 2013. “Biopolímeros: Avances y Perspectivas”. Dyna 181:171–80.

Velasteguí, Ana. 2017. “Análisis sobre el aprovechamiento de los residuos del plátano, como materia prima para la producción de materiales plásticos biodegradables”. Dominio de las Ciencias 3(2):506–25.

Velastegui, Ramiro. 1993. El Cultivo de yuca en el Ecuador. 1a ed. editado por INIAP. Quito.

Vroman, Isabelle y Lan Tighzert. 2009. “Biodegradable polymers”. Materials 2(2):307–44.

Waring, R. H., R. M. Harris, y S. C. Mitchell. 2018. “Plastic contamination of the food chain: A threat to human health?” Maturitas 115(June):64–68.

Webb, Hayden K., Jaimys Arnott, Russell J. Crawford, y Elena P. Ivanova. 2013. “Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate)”. Polymers 5(1):1–18.

Zhang, Zheng, Ophir Ortiz, Ritu Goyal, y Joachim Kohn. 2014. Biodegradable Polymers. Elsevier Inc.

Publicado
2022-09-30
Cómo citar
[1]
Valarezo Ulloa , M.J. y Punín Burneo, M.G. 2022. Alternativas de desarrollo sostenible: polímeros a partir de desechos orgánicos. Analysis. Claves de Pensamiento Contemporáneo. 34, (sep. 2022), no. 4: pp. 1-16.
Sección
Ciencias Sociales

Artículos más leídos del mismo autor/a