Some remarks on the Philosophy of Mathematical Practice

  • Paolo Mancosu University of California, Berkeley, USA
Keywords: Philosophy of Mathematics, Mathematical Practice, Naturalism, Foundationalism

Abstract

The article is an introduction to a new approach to the philosophy of mathematics that goes under the name of «the philosophy of mathematical practice». The new approach found its expression in the collection The Philosophy of Mathematical Practice (Oxford, Oxford University Press, 2008) edited by the author. The article situates the «philosophy of mathematical practice» within the context of other traditions in the philosophy of mathematics and outlines the similarities and differences with those traditions.

Author Biography

Paolo Mancosu, University of California, Berkeley, USA

Paolo Mancosu, es Catedrático Willis S. and Marion Slusser de Filosofía en la University of California, Berkeley, Estados Unidos. Doctor en Filosofia (PhD) por la Stanford University, Estados Unidos. Sus intereres de investigación se centran en la filosofía de las matemáticas y su historia, la filosofía de la lógica y la lógica matemática. Entre sus principales publicaciones se cuentan: From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s (Oxford: Oxford University Press, 1997); Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century (Oxford: Oxford University Press, 1996); The Philosophy of Mathematical Practice (Oxford: Oxford University Press, 2008); y, The Adventure of Reason (Oxford: Oxford University Press, 2010). En breve aparecerá: Abstraction and Infinity, en Oxford University Press.

References

Aspray, William y Kitcher, Philip (1988). History and Philosophy of Modern Mathematics. Minneapolis: University of Minnesota Press.

Bays, Timothy (2004), «Review of Corfield’s Towards a Philosophy of Real Mathematics». Notre Dame Philosophical Reviews. January. http://ndpr.nd.edu/review.cfm?id=1042.

Bressoud, David (1999). Proofs and Confirmations: the story of the alternating sign matrix conjecture. Cambridge, UK: Cambridge University Press. doi: http://dx.doi.org/10.1017/CBO9780511613449

Cellucci, Carlo (2002). Filosofia e Matematica. Bari: Laterza.

Cellucci Carlo y Gillies, Donald (eds.) (2005). Mathematical Reasoning and Heuristics. Londres: King’s College Publications.

Corfield, David (2003). Towards a Philosophy of Real Mathematics. Cambridge, UK: Cambridge University Press. doi: http://dx.doi.org/10.1017/CBO9780511487576

Davis, Philip y Hersh, Reuben (eds.) (1980). The Mathematical Experience. Basel: Birkhäuser.

Gillies, Donald (ed.) (1992). Revolutions in Mathematics. Oxford: Clarendon Press.

Ferreiros, José y Gray, Jeremy (eds.) (2006). The Architecture of Modern Mathematics. Oxford: Oxford University Press.

Grosholz, Emily y Breger, Herbert (2000). The Growth of Mathematical Knowledge. Dordrecht: Kluwer Academic Publishers. doi: http://dx.doi.org/10.1007/978-94-015-9558-2

Hersh, Reuben (2006). 18 Unconventional Essays on the Nature of Mathematics. New York: Springer. doi: http://dx.doi.org/10.1007/0-387-29831-2

Kitcher, Philip (1984). The Nature of Mathematical Knowledge. Oxford: Oxford University Press.

Kline, Morris (1980). Mathematics. The Loss of Certainty. Oxford: Oxford University Press.

Koetsier, Teun (1991). Lakatos’ Philosophy of Mathematics: A Historical Approach. Amsterdam: North–Holland.

Krieger, Martin (2003). Doing Mathematics: Convention, Subject, Calculation, Analogy. Singapore: World Scientific Publishing. doi: http://dx.doi.org/10.1142/5133

Lakatos, Imre (1976). Proofs and Refutations. Cambridge, UK: Cambridge University Press. doi: http://dx.doi.org/10.1017/CBO9781139171472

Larvor, Brendan (1998). Lakatos: An Introduction. Londres: Routledge.

Maddy, Penelope (1990). Realism in Mathematics. Oxford: Clarendon Press.

Maddy, Penelope (1997), Naturalism in Mathematics. Oxford, Clarendon Press.

Mancosu, Paolo (2005). «Harvard 1940–41: Tarski, Carnap and Quine on a finitistic language of mathematics for science». History and Philosophy of Logic 26: pp. 327–357. doi: http://dx.doi.org/10.1080/01445340500141586

Mancosu, Paolo (ed.) (2008a). The Philosophy of Mathematical Practice. Oxford: Oxford University Press.

Mancosu, Paolo (ed.) (2008b). «Quine and Tarski on Nominalism». En: Oxford Studies in Metaphysics IV, editado por Dean Zimmerman. Oxford: Oxford University Press, pp. 22–55.

Mancosu, Paolo, Jørgensen, Klaus Frovin y Pedersen, Stig Andur (eds.) (2005). Visualization, Explanation and Reasoning Styles in Mathematics. Dordrecht: Springer.

Paseau, Alexander (2005). «What the foundationalist filter kept out». Studies in History and Philosophy of Science 36: pp. 191–201. doi: http://dx.doi.org/10.1016/j.shpsa.2004.12.012

Pincock, Christopher (2005). «Review of David Corfield’s Towards a Philosophy of Real Mathematics». Philosophy of Science 72: pp. 632–634. doi: http://dx.doi.org/10.1086/505449

Quine, Willard Van Orman (1984). «Review of Parson’s Mathematics in Philosophy». Journal of Philosophy 81: pp. 783–94. doi: http://dx.doi.org/10.2307/2026033

Tappenden, Jamie (en prensa). Philosophy and the Origins of Contemporary Mathematics: Frege in his Mathematical Context. Oxford, Oxford University Press.

Tymoczko, Thomas (ed.) (1985). New Directions in the Philosophy of Mathematics: An Anthology. Revised and Expanded Edition. Princeton, NJ: Princeton University Press, 1998.

Van Kerkhove, Bart y Van Bengedem, Jean Paul (eds.) (2002). Perspectives on Mathematical Practices. Número especial de Logique et Analyse 45 (179–180): pp. 235–437.

Van Kerkhove, Bart and Van Bengedem, Jean Paul (eds.) (2007). Perspectives on Mathematical Practices: Bringing Together Philosophy of Mathematics, Sociology of Mathematics, and Mathematics Education. Dordrecht: Springer.

Published
2016-12-31
How to Cite
[1]
Mancosu, P. 2016. Some remarks on the Philosophy of Mathematical Practice. Disputatio. 5, 6 (Dec. 2016), 131-156. DOI:https://doi.org/10.5281/zenodo.3551818.
Section
Articles and Essays