La matemática, la intuición y el lenguaje en la primera Crítica y en el Tractatus
Resumen
La proposición 6.233 del Tractatus de Wittgenstein se ha ido leyendo como un rechazo de la afirmación kantiana de que la matemática esté basada en la intuición. Contrariamente a contribuciones previas estoy desarrollando una lectura de la Crítica y del Tracatus que muestra que los dos tenían un entendimiento similar acerca del tipo de explicación que la matemática requiere. Lo hago concentrándome en una similitud estructural fundamental entre la nocion de Satz (proposición) tractariana y la kantiana de Erkenntnis (conocimiento). Arguyo que se puede hacer una lectura fecunda de una gran parte de la terminología fundamental de las dos obras como resultado de un análisis de estas dos nociones en términos de forma y materia; además, ambos términos se entienden mejor si se considera su uso paradigmático: conocimiento empírico para Kant y proposiciones significativas para Wittgenstein. Este análisis nos permite obtener un mejor entendimiento de la intuición pura de Kant y de la forma lógica tractariana de símbolos proposicionales que ilumina los dominios en los cuales los dos autores piensan que la matemática está operando.
Referencias
Bronzo, Silver (2011). “Context, Compositionality, and Nonsense in Wittgenstein’s Tractatus”. In: Beyond the Tractatus Wars: The New Wittgenstein Debate, edited by Rupert Read and Matthew Lavery. New York: Routledge.
Conant, James (2002). “The Method of the Tractatus”. In: From Frege to Wittgenstein: Perspectives on Early Analytic Philosophy, edited by E Reck, 374–462. New York: Oxford University Press. DOI: 10.1093/0195133269.003.0015.
Conant, James (2016). “Why Kant Is Not a Kantian”. Philosophical Topics vol. 44 no. 1: pp. 75–125. DOI: 10.5840/philtopics20164417.
Conant, James (2020). “Reply to Gustafsson: Wittgenstein on the Relation of Sign to Symbol”. In: The Logical Alien, edited by Sofia Miguens. Cambridge: Harvard University Press, pp. 863–947. DOI: 10.4159/9780674242821.
Diamond, Cora (2014). “The Hardness of the Soft: Wittgenstein’s Early Thought About Skepticism”. In Varieties of Skepticism: Essays after Kant, Wittgenstein, and Cavell, edited by James Conant and Andrea Kern. Berlin, Boston: De Guyter, pp. 145–181. DOI: 10.1515/9783110336795.
Floyd, Juliet (2002). “Number and Ascriptions of Number in Wittgenstein’s Tractatus”. In From Frege to Wittgenstein: Perspectives on Early Analytic Philosophy, edited by E Reck. New York: Oxford University Press, pp. 308–352. DOI: 10.1093/0195133269.003.0013.
Floyd, Juliet (2005). “Wittgenstein on Philosophy of Logic and Mathematics”. In: The Oxford Handbook of Philosophy of Logic and Mathematics, edited by Stewart Shapiro. Oxford: Oxford University Press, pp. 75–135. DOI: 10.1093/oxfordhb/9780195325928.001.0001.
Frascolla, Pasquale (1994). Wittgenstein’s Philosophy of Mathematics. London: Routledge. DOI: 10.4324/9780203022467.
Hylton, Peter (2005). “Functions, Operations, and Sense in Wittgenstein’s Tractatus”. In: Propositions, Functions, and Analysis: Selected Essays on Russell’s Philosophy. Oxford: Oxford University Press, pp. 138–152. DOI: 10.1093/acprof:oso/9780199286355.003.0009.
Kant, Immanuel (1950). Prolegomena to Any Future Metaphysics. Translated by Lewis White Back. Indianapolis: Bobbs-Merrill.
Kant, Immanuel (2007a). Correspondence. Edited by Arnulf Zweig. Cambridge: Cambridge University Press.
Kant, Immanuel (2007b). Critique of Pure Reason. Translated by Paul Guyer and Allen Wood. New York: Cambridge University Press.
Kremer, Michael (2022). “Mathematics and Meaning in the Tractatus”. Philosophical Investigations vol. 25 no. 3: pp. 272–303. DOI: 10.1111/1467-9205.00175.
Land, Thomas (2014). “Spatial Representation, Magnitude and the Two Stems of Cognition”. Canadian Journal of Philosophy, Mathematics in Kant’s Critical Philosophy, vol. 44 nos. 5/6: pp. 524–550. DOI: 10.1080/00455091.2014.971688.
Lockhart, Thomas (2016). “Prolegomena to a Proper Treatment of Mathematics in the Critique of Pure Reason”. Philosophical Topics, Analytical Kantianism, vol. 34 no.s 1 & 2: pp. 221–281. DOI: 10.5840/philtopics2006341/29.
Marion, Matthew (1998). Wittgenstein, Finitism, and the Philosophy of Mathematics. New York: Oxford University Press. DOI: 10.1093/mind/110.438.501.
Monk, Ray (1991). Ludwig Wittgenstein: The Duty of Genius. New York: Vintage.
Moore, Adrian (2013). “Was the Author of the Tractatus a Transcendental Idealist?”. In: Wittgenstein’s Tractatus. History & Interpretation, edited by Adrian Moore and Peter Sullivan. Oxford: Oxford University Press, pp. 239-255. DOI: 10.1093/acprof:oso/9780199665785.003.0010.
Parsons, Charles (1983). “Kant’s Philosophy of Arithmetic”. In: Mathematics in Philosophy. Itaha: Cornell University Press, pp. 110–149.
Potter, Michael (2002). Reason’s Nearest Kin: Philosophies of Arithmetic from Kant to Carnap. Oxford: Oxford University Press. DOI: 10.1093/acprof:oso/9780199252619.003.0012.
Smyth, Daniel (2014). “Infinity and Givenness: Kant on the Intuitive Origin of Spatial Representation”. Canadian Journal of Philosophy, Mathematics in Kant’s Critical Philosophy, vol. 44 nos. 5/6: pp. 524–550. DOI: 10.1080/00455091.2014.967737.
Smyth, Daniel (2015). “Infinity and Givenness: Kant’s Critical Theory of Sensibility”. PhD Dissertation, Chicago: University of Chicago.
Stenlund, Sören (1990). Language and Philosophical Problems. London: Routledge. DOI: 10.4324/9780203406991.
Stenlund, Sören (2013). “Wittgenstein and Symbolic Mathematics”. O Que Nos Faz Pensar vol. 22, no. 33: pp. 7–34.
Stenlund, Sören (2014). “The Origin of Symbolic Mathematics and the End of the Science of Quantity”. Uppsala Philosophical Studies 59 (April). DOI: 10.13140/2.1.3954.5281.
Wittgenstein, Ludwig (1974). Tractatus Logico-Philosophicus. Edited by Brian McGuinness and David Frances Pears. 2nd ed. New York: Routledge & Kegan Paul.
Wittgenstein, Ludwig (1979). Notebooks: 1914-1916. Translated by Gertrude Elizabeth Margaret Anscombe and Georg Henrik Von Wright. Chicago: University of Chicago Press.
Wittgenstein, Ludwig (1984). Philosophical Remarks. Edited by Rush Rhees. Translated by Raymond Hargreaves and Roger White. Chicago: University of Chicago Press.
Young, Michael (1992). “Construction, Schematism, and Imagination”. In Kant’s Philosophy of Mathematics, edited by Carl J Posy. Philadelphia: Kluwer, pp. 159–75. DOI: 10.1007/978-94-015-8046-5_7.
Derechos de autor 2022 Disputatio. Philosophical Research Bulletin
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.