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ABSTRACT 
I discuss here the pragmatic problem in the philosophy of mathematics, that is, 
the applicability of mathematics, particularly in empirical science, in its many 
variants. My point of depart is that all sciences are formal, descriptions of formal–
structural properties instantiated in their domain of interest regardless of their 
material specificity. It is, then, possible and methodologically justified as far as 
science is concerned to substitute scientific domains proper by whatever domains 
—mathematical domains in particular— whose formal structures bear relevant 
formal similarities with them. I also discuss the consequences to the ontology of 
mathematics and empirical science of this structuralist approach. 
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INCE EUGENE WIGNER’S FAMOUS PAPER (Wigner 1960) much has been said about the uses 
of mathematics in science, particularly as a heuristic tool. Wigner thought this was a 

“gift” we “neither understand nor deserve”; others, as the philosopher Mark Steiner (Steiner, 
1989, 95, 98), went as far as claiming that the fact that mathematics can be used in science as 
an instrument of discovery puts a problem for the belief that man has no special place in the 
natural order of things. 

I want to argue here, first, that the scientific usefulness of mathematics is mysterious only 
from an empiricist point of view, that the mystery utterly disappears in an idealist perspective, 
and, second, that the transcendental–idealist approach to mathematical structuralism that I 
sketch here can explain to full satisfaction the four main uses of mathematics in empirical 
science, the representational, the organizational, the predictive and the heuristic. I also show 
how to deal, from this perspective, with ontological issues in mathematics (the existence of 
mathematical objects and Benacerraf’s dilemma and the arguments of indispensability 
advanced in favor of mathematical Platonism) and science.  

 

1. Let me begin with a fundamental logical fact, essential for the discussion here. Any theory, 
in no matter which language and how carefully designed, which has an interpretation has 
always more than one. In the optimal case of categorical theories, all interpretations are 
isomorphic. In this case, and in this only, one can say that the theory univocally characterizes 
something, namely, the same identical ideal form or structure instantiated in each of its 
interpretations. Non–categorical theories can be seen either as incomplete characterizations of 
ideal structures that are, nonetheless, assumed to be completely determined in themselves (i.e. 
independently of the theories) or as complete characterizations of families of structures. No 
theory can by itself singularize a materially determined domain of interpretation. 

For the terms of a language to have a material content beyond the formal content that 
they have as terms of a grammatically structured language, or, in other words, for them to 
denote something, to grasp a material content, something beyond language is required, 
namely, an intentional act on the part of the language user that associates content to symbols: 
objects of a material ontological type to object–names, relations among these objects to 
relation–names, etc. Denoting is an intentional act that cannot, at its most basic level, be 
linguistically expressed. Only after a material content is given to the basic symbols of a 
language, this language can be used to singularize objects and situations in the domain of 
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reference in question via definitions and descriptions. No interpretation of a theory can be 
singled out independently of a reference being determined by non–linguistic means.1 

A few definitions are in order. A domain is materially determined or, equivalently, a 
material domain if its objects belong to a proper subdomain of the most general ontological 
domain, that of all objects. For example, the domain of physical objects is a material domain, 
as is that of ideal objects. A domain is only formally determined or a formal domain if its 
objects do not belong to any particular ontological domain; i.e., if they are taken as nothing 
beyond objects in the most general sense. Formal domains can be given either by formal (i.e. 
non–interpreted) theories as their correlates or by formally abstracting the form of material 
domains. Formal abstraction is essentially a logical operation by which entities of particular 
ontological types are taken as entities of the most general ontological types to which they can 
belong (this operation has a correlate in the operation of des–interpretation in which symbols 
are devoid of any particular interpretation). 

Given a materially determined structured domain, i.e. a domain of objects of a particular 
type where structuring relations are defined, the abstract form or (formal) structure of this 
domain is the domain itself, but ignoring the ontological specificity of its elements, which are 
“seen” as nothing but unspecified objects. By “being seen” I mean that their specific material 
properties are not taken into account. Of course, to be seen as unspecified objects is a logical–
intentional, not psychological operation. In other words, the objects of the given domain, 
despite belonging to a particular ontological category, are intended only as objects simpliciter; 
the determinations they have as the specific type of objects they are are not taken into 
consideration. An abstract structure is, in other words, a formal structured domain whose 
elements and structuring relations are taken as nothing beyond instances of the formal 
categories of Object and Relation respectively, their material nature being abstracted out, that 
is, ignored (which, of course, does not mean that they do not exist). 

The structure of a given structured material domain is an abstract aspect of this domain 
and cannot subsist without it (objects are abstract when their existence requires the existence 
of other objects on which they ontologically depend, like the color of the colored object). But 
one can, by identifying the abstract structures of all isomorphic domains, which are equal but 
not identical, posit an ideal structure that is instantiated in all those domains. Although 
abstract objects can be real, such as the color of a physical body, which is located at the same 
chunk of space–time where the object whose color it is is, or still the abstract structures of 
structured systems of real objects, ideal structures are not real, even if they have real 
instantiations, and, then, are not located in space–time. 

Ideal structures can also be determined as objective correlates of non–interpreted 
categorical theories, i.e. as the structures these theories posit descriptively. Theories in general, 
and categorical theories in particular, are intentionally loaded systems of propositions which 
purport to describe something. In case of interpreted theories, these things are their standard 
interpretations, which in general pre–exist the theories that describe them. In case of non–

 
1  In more technical terms, the interpretation function is not definable in the language.  
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interpreted or pure theories, however, these things do not pre–exist their theories and are 
posited by them. The objective correlates of pure theories are materially indeterminate 
structured domains, determined only as to form but not content. Categorical non–interpreted 
theories, in particular, posit uniquely characterized structures identically instantiable in all 
their material interpretations. 

We must keep this in mind: no theory, pure or interpreted, can independently of 
accompanying intentional acts singularize a materially determined domain. Empirical 
theories are no exception. No matter what we think empirical theories are theories of, 
transcendent reality or only our perception of it, the fact remains that empirical sciences can 
only reach the formal–structural skeleton of their domains.2 By itself, language only captures 
the formal, the material requires interpreting language, which cannot be accomplished within 
the language one is interpreting. 

Therefore, a material theory is essentially a theory of the ideal structure of a materially 
determined structured system of things, often the standard interpretation attached to the 
theory. But any material theory can be reinterpreted as the theory of any domain that shares 
with the standard interpretation all the formal properties that the theory captures and 
expresses. Categorical theories are the only theories that encapsulate enough formal properties 
of the standard interpretation to single out its ideal structure, instantiated in all its 
interpretations, i.e. all structured domains isomorphic to the standard interpretation (it may, 
however, if it is not deductively complete, fail to determine deductively all the formal properties 
of this structure that are expressible in the language of the theory). In this sense, all theories, 
materially determined or not, are formal. I will call the intended interpretation of an 
interpreted theory its standard semantics. 

 

2. It is a relevant epistemological fact that the theoretical development of a theory does not 
depend essentially on its standard semantics, even when the theory is not syntactically 
complete (when it is, everything that is true in the domain of the theory is deducible in the 
theory). One can develop the theory of a domain by investigating any domain that has 
relevant formal similarities with the domain of the theory, since theories can only capture 
formal aspects of their domains and, therefore, cannot discriminate between domains that 
share relevant formal properties. In case the theory is categorical, any of its interpretations can 
serve as a field of investigation as far as the theory is concerned. An interesting example of this 
methodological strategy in mathematics is analytic geometry, in which geometry is done 
algebraically by solving numerical equations instead of carrying out geometrical 
constructions. In general, in case of only partial formal similarity, two domains will share 
some, but maybe not all formal–structural properties.     

The applicability of mathematics to daily life, mathematics itself or the empirical science, 
depends solely on this fact. Mathematics is the theory of ideal structures in general and its 

 
2  For methodological reasons, structures “extracted” from perceptual “reality” are often idealized 

and extended mathematically, as we will see below. 
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applicability and practical effectivity depends on the availability of mathematical structures that 
are instantiable in domains of practical or scientific interest or domains that have relevant 
formal similarities with those that interest us in practical affairs and theoretical science. 

 

3. Let us consider the applicability of mathematics in empirical science in more details. Our 
first approach to the empirical world is perceptual, and science must be built on this basis. 
Even if theoretical science usually goes well beyond it, perceptual reality remains the focus of 
interest and the highest court where scientific theories are tested. 

But perceptions are not made of sensations only. Perceptual reality is a construct based on 
sensorial data but not reducible to them. There is more to perception than what meets the 
senses. What we perceive is the result of both built–in psychophysical systems that organize 
sensorial inputs into percepts and a certain amount of intentional action that interpret what 
one is perceiving. Perceiving event A causally related to event B, for example, goes beyond 
simply having a bunch of sensorial impressions followed in time by another bunch of 
sensations. Perception is organized sensation with meaning, it has both hyletic (sensorial) 
matter and categorial form, which is, at least to some extent, a contribution of the perceiving 
subject. 

So, perceptual reality is already a construct. But not yet a mathematical construct; to 
become one, further intentional action, such as abstraction and idealization, are required. 
These actions “extract” the abstract structure out of perceptual reality, further idealizing it 
into a mathematical manifold proper, mathematical–perceptual reality to give it a name. In 
mathematical physics, the mathematical exactification of the abstract structure of perceptual 
reality —i.e. mathematical–perceptual reality— usually stands for reality itself; it is real reality, 
so goes the view, that perception can only approximate. Anything in perceptual experience that 
cannot be given a formal correspondent in mathematical–perceptual reality is not of interest to 
physics. It is discarded as a subjective experience with no objective relevance. Only form is 
objective. The subjective sensation of color or heat, for example, only find a way into objective 
science by being made to correspond to objective entities that can be mathematized, that is, 
represented mathematically, frequency of electromagnetic radiation and temperature in our 
examples, both representable in the continuum of real numbers. 

Then, a correspondence is established between perceptual reality and mathematical 
structures so that the latter represent the former.3 For mathematical physics, however, 
mathematical–perceptual reality is reality.4  In Crisis (Husserl 1954) Husserl criticizes this 

 
3  Husserl refers explicitly to a correspondence between the system of perceptions (objectified 

sensations) and its mathematical representative: “[...] the specifically sensible qualities […] that we 
experience on bodies given to intuition are intimately connected according to a rule, in a particular 
manner, to the forms that belong to them according to their essence” (Husserl 1954, §9c). Still, 
according to him, the perceptual world has “its double in the realm of forms, in a way that any change in 
the manifold of contents [the perceptual world, my note] has a causally induced copy in the sphere of forms” 
(ibid., §9h). 

4  Husserl is explicit about this: “[…] the general hypothesis (my emphasis) according to which 
empirical Nature is experienced as an approximation of the mathematically ideal Nature” (Husserl 
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emphatically; mathematical–perceptual reality, he points out, is not reality, only a 
methodological devise for indirectly investigating the formal aspects of perceptual reality (or 
transcendent reality, depending on one’s metaphysics) by mathematical means. 

Mathematical–perceptual reality is only the materially empty formal mold, the structure 
of perception in idealized mathematical form. It can only represent perceptual reality (or 
transcendent reality that supposedly “causes” it) by means of a semantics, either that which 
was “abstracted out” in the mathematization of perceptual experience or any other consistent 
with it. Mathematical–perceptual reality can be dissociated from its standard semantics, the 
perceptual reality at its basis, and be given another semantics. The same is true of the 
mathematically enriched extensions of mathematical–perceptual reality (this alone accounts 
for the heuristic applicability of mathematics in science, as we will see). 

Theories of mathematical physics are not tested by being confronted with perceptual 
reality directly, but with already intentionally elaborated mathematical–perceptual reality. 
Hence, as Husserl points out in Crisis, transcendental presuppositions that go into the 
intentional constitution of mathematical–perceptual reality are not directly tested 
experimentally. 

The intentional constitution of perceptual reality, even before its idealization into 
mathematical–perceptual reality, involves a series of presuppositions that are not hypotheses 
or empirical presuppositions that can be put to test, but real transcendental constitutive 
presuppositions. The more relevant ones, on which the very logic of reasoning about reality 
depends, are that reality is a consistent, ontologically complete, objectively given, cognitively 
accessible domain of being. The world is such that objects and facts of the world preserve their 
identity in the flux of time, facts do not rule out one another (consistency), no situation 
(representation of a fact) that is possible in the world is in itself indeterminate as to its 
factuality (ontological completeness), the world exists out there (objective giveness) and is 
ideally, i.e. in principle, knowable (cognitive accessibility). The perceptual world, however, is 
not only the actually perceived world but the ideally stable maximally consistent system of 
things and facts in principle perceivable.5 Mathematical–perceptual reality is its abstract 
structure mathematically idealized. 

 

4. But mathematical–perceptual reality is only a first and still incomplete (mathematical) 
sketch of what the mathematical science of nature calls empirical reality.6 Empirical reality 
contains mathematical–perceptual reality but extends further than the perceivable, even the 

 
1954, appendix IV to §12). 

5  A situation of the world is in principle perceivable if represents the world in accordance with the 
meaning attached to the categories by which the world is structured.  

6  I call empirical reality the objective correlate of the mathematical sciences of nature. Empirical reality 
is a mathematical manifold, not because nature is intrinsically mathematical, but because it is made 
so for methodological purposes. (Mis)taking mathematical surrogates of perceptual reality for 
“true” reality, which perception can only imperfectly access, is, for Husserl, the characteristic 
feature of the modern mathematical empirical science.    
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only in principle, only imperfectly perceivable, into a domain of purely theoretical constructs 
with no representational role (for example, the wave–function of quantum mechanics). 
Theories of mathematical–perceptual reality, the so–called phenomenological theories, often 
only organize perceptual experience in terms of ad hoc principles and rules (for example, the 
early quantum mechanics of Planck, Bohr and Einstein). Full–blown mathematized science 
further extends mathematical–perceptual reality mathematically to have access to more 
refined mathematical methods to deal with it. It is a methodology.  

This depends on the fact that, by being a mathematical manifold, mathematical–
perceptual reality can be immersed into other mathematical manifolds by having further 
elements, structure, or both, adjoined to it. The mathematical–physicist is to some extent free 
to mathematically “improve” mathematical–perceptual reality, provided observable 
consequences of the resulting theories are testable and turn out to be true. There is no a priori 
restriction on which mathematics and how much mathematics can be used in the theoretical 
development of physical theories, for beyond the level of the mathematical representation of 
perceptual reality (mathematical–perceptual reality) mathematics does not necessarily a have a 
representational role in science.7 

Some questions, however, are always on the scientist’s mind: 1) are assertions derived in 
physical theories with the assistance of the mathematical machinery available therein that can 
be translated back via the standard semantics into situations that are in principle observable 
observed, that is, are they true? 2) Can objectual, conceptual and relational terms of physical 
theories that are not a priori representational and assertions involving them derived therein be 
given an interpretation in perceptual reality by consistently extending and enriching the 
standard semantics? 

 

5. What has been said suggests that mathematics has essentially the following uses in science: 

a) Representational, by expressing in idealized form abstract aspects of perceptual 
reality. In this role mathematics is a language that represents perceptual reality via a 
fixed interpretation. Perceptual reality has an abstract structure that mathematics 
expresses in idealized form.    

b) Organizational, by providing contexts of immersion of mathematical–perceptual 
reality. Mathematics used for organizational purposes may or may not represent 
something in perceptual reality. In this role mathematics is a tool that “constructs and 
delivers structures”, a provider of contexts where mathematical inferences can be 
carried out. A good example is linear algebra in matrix mechanics; only some 
elements of this mathematical formalism represent something experienceable, the rest 
has only an organizational role interna corporis. 

c) Predictive, by allowing the derivation of theoretical assertions that can be given an 
 
7  As Husserl insists, empirical reality, that is, reality as conceived by the mathematical science of 

nature, is only a construct devised for methodological reasons. Among them, to provide better ways 
to predict future perceptions. 
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observational content, either in standard or extended, non–standard semantics. If 
previsions turn out to be true, the mathematics involved in their derivation has a 
bigger chance of having a representational character, but not necessarily, for 
semantically meaningless mathematics can be used for deriving semantically 
meaningful assertions that happen to be true. 

d) Heuristic, by providing calculi that admit non–standard semantics where assertions 
that are not meaningful in the standard semantics become meaningful. If the 
extended semantics turns out to correspond to experience, that is, if it provides a new 
standard semantics, one is tempted to say that mathematics was “unreasonably 
effective” in showing how reality is. But this is not correct. The modified semantics is 
not required by the mathematical formalism, for no formalisms can determine a 
semantics. Moreover, there may exist more than one semantics that turns 
meaninglessness into meaningfulness (example, the theoretical “prediction” of 
positrons, which can be given different interpretations). And, finally, the modified 
semantics may not at all correspond to reality. Mathematics alone has no heuristic 
virtues; at best the mathematical formalism can, by its rules of symbolic 
manipulation, allow the emergency of formal regularities that have no meaning in the 
standard semantics, but that can be given one by modifying this semantics. How, 
mathematics is silent about. 

 

6. As said before, mathematics is the science of formal structures (forms, patterns, whatever 
you want to call them). The applicability of mathematics in science requires, first, that a 
mathematical structure be attached to perceptual experience. This, as we have seen, requires 
intentional action. And second, that a sufficiently rich plethora of structures be available 
where mathematical–perceptual reality, the mathematical idealization of abstract aspects of 
perceptual reality, can be immersed for methodological reasons. 

Purely mathematical extensions of mathematical–perceptual reality need not correspond 
to anything effectively perceived or potentially perceivable, and even less to anything 
metaphysically real, although it is not ruled out a priori that it can. Their utility rests solely on 
the fact that their theories may offer a more convenient context for the formal–structural 
investigation of mathematical–perceptual reality. 

The mathematical investigation of contexts of immersion of mathematical–perceptual 
reality may disclose formal facts that can be given an interpretation in either standard 
semantics or convenient extensions of it. In the first case mathematics plays a predictive role, 
in the second, a heuristic one. Predictions can be either confirmed or disconfirmed 
perceptually; in case they are disconfirmed the entire theory responsible for the prediction is 
under threat. 

Heuristic suggestions, on their turn, are only vindicated when there actually are 
extensions of standard semantics, that is, extensions of “standard” perceptual reality that offer 
a better context of interpretation for the mathematical extensions of the original 
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mathematical–perceptual reality. In this case, one can say, the utility of mathematics in 
science rests on its ability to disclose formal aspects of a hidden reality before we experience 
this reality directly. But, it is important to notice, whether in fact there is such a reality or what 
it is if it exists are things mathematics is completely silent about. This undermines the strong 
claim that mathematics has, by itself, a heuristic role in science. Mathematics heuristic virtues 
can only bloom irrigated by the semantic creativity of the scientist.     

 

7. The structuralist approach to mathematics that I have sketched here can account, as I think 
to have shown, for the many ways mathematics appears in empirical science; in particular, as a 
heuristic tool. I want now to address two ontological questions; the first, whether there are 
mathematical objects other than empty structures and, the second, whether the 
indispensability of mathematics in modern empirical science does indeed require the 
existence of mathematical objects. More precisely, I want to address briefly the so–called 
Benacerraf’s dilemma and a version of an argument known in the literature as the 
indispensability argument. Let us begin with Benacerraf.  

The fact that mathematical theories are formal (i.e. they are structural descriptions of 
either instantiated or pure structures) does not necessarily require that mathematical objects 
do not exist, for if one accepted this conclusion for mathematics one would, out of coherence, 
had to accept it also for no matter which science, including empirical science, for all theories, 
including empirical theories are, as already stressed, formal in this sense. 

Mathematical objects exist, even though their theories are not particularly concerned with 
them from a material, only from a formal perspective. Let us consider one example, material 
(or contentual) arithmetic, whose domain is that of numbers in the proper sense of the term, 
i.e. objects falling under the concept of number, the schema —to use Kantian terminology— of 
the category of quantity. 

A number —or, better, a natural number— is an ideal form, namely, the quantitative form 
of a class of equivalent collections of whatever objects. Two collections are equivalent when 
they are equinumerous, i.e. when there is a 1–1 correspondence among them. Number or 
quantitative form is that which equinumerous collections have in common. Numbers can be 
ordered as to their magnitude, n being smaller than or equal to m when there is an injective 
application, not necessarily onto, of any collection numbered by n into any collection 
numbered by m. One can also operate with numbers, m being the sum of n and k when m is 
the number of the disjoint union of any two collections numbered by n and k, and so on. The 
domain of arithmetic is the domain of numbers structured by these operations and relations. 

Contentual arithmetic can be divested of its domain, that is, formally abstracted, and 
reinterpreted as the theory of a different domain, in particular any domain that is isomorphic 
to the domain of numbers. One can then say that contentual arithmetic is, but at the same 
time that it is not a theory of numbers. As a contentual theory it is, but it can only express, as 
any other theory, that which is most formal about its domain, namely, that which can be 
reinterpreted in other material domains that are formally similar to its original, intended 
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domain, that of numbers proper. In this sense, arithmetic is not exclusively about numbers, 
but anything that behaves like numbers. Or better still, contentual (material) arithmetic is the 
formal theory of numbers qua numbers, whereas formal, non–interpreted arithmetic, is the 
formal theory of number–like entities in general. 

This ambiguity has induced some philosophers into believing that there is nothing more 
to number than being places in a structure, i.e. numbers are numbers only because they 
behave as numbers, thus effacing completely the difference between contentual and formal 
arithmetic. Paul Benacerraf, for example, has a famous argument purporting to show this: 
since numbers can be interpreted in infinitely many equivalent ways as sets or, for that matter, 
objects of any type, numbers are not objects, but materially empty entities that only exist in a 
system. Numbers, he thinks, have no non–structural characterizing properties, nothing that 
distinguishes them from other number–like entities. Numbers only exist in a system, 
depending on other numbers to be characterized and singularized.  

Against Benacerraf, I claim that numbers are singular objects of a type, namely, idealized 
abstract quantitative forms belonging to a domain circumscribed by a concept that can be 
intuitively accessed. Numbers can also be intuitively accessed individually, if not effectively, at 
least as a matter of principle. The number 1,117, for example, is a well–determined object 
materially (but not formally) different of other objects that may occupy its place in the ideal 
number system. 1,117 is not merely the name of a place in an empty structure, but of a 
number, in principle, if not actually accessible to intuition by abstracting and ideating the 
quantitative form of a collection of objects that can in principle be presented to 
consciousness.8 

Moreover, although equinumerous collections instantiate the same number, numbers are 
not collections of equinumerous classes, although they can be thus represented from a purely 
formal perspective. Nor can numbers be reduced to any collection they number. In short, the 
fact that one can represent numbers set–theoretically does not imply that numbers are sets. 
Numbers are what they are, ideal abstract forms instantiable in quantitatively determined 
collections of objects as their quantitative form. 

Hard core structuralists believe that numbers cannot be told apart from other number–
like entities. This is true, of course, if one remains confined to arithmetic, for any theory can 
be reinterpreted salva veritate as the theory of a domain materially (but not formally) different 
from its intended domain. But there are non–arithmetic ways of characterizing numbers as the 
specific objects they are, and intuitive ways of accessing numbers by abstracting the 
quantitative form out of given collections of objects. So, numbers can be told apart from 
objects of other materially determined interpretations of arithmetic and be directly presented 
to consciousness independently of arithmetical properties. Numbers have material and formal 
properties, the former tell them apart from any other objects, other number–like entities in 
particular, the latter are those they have in common with number–like objects in general. The 

 
8  Ideation is the intentional experience that posits ideal objects, the number 5, for example, over and 

above the many 5’s instantiated as abstract aspects of collections of 5 objects. 
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most fundamental material property of numbers is that they are quantitative forms, a 
property, however, inexpressible in arithmetic. Contentual arithmetic only captures the 
formal properties of the numerical domain as a system of objects, operations and relations, i.e. 
as a number–like domain. The fact that only the formal properties of numbers are of interest 
to mathematics does not imply that they do not have material properties tout court.       

Mathematics is a formal science, in the precise sense that mathematical theories are 
formal, and the true objects of mathematics are formal structures, instantiable in principle in 
any material context whatsoever. But mathematics often finds it useful to posit material 
domains conceptually (for example, that of numbers proper) with the double purpose of 
instantiating a structure in it and accessing this structure via the concept that circumscribes 
the domain. The material nature of objects is, from a mathematical perspective, irrelevant, 
although it often provides a means of accessing the structure they instantiate. 

Although a theory may be born out of an intuitive grasp of the concept delimiting its 
material domain, such as, for example, contentual arithmetic, it does not have to be tied to 
this domain for its development. Any formally similar domain —in particular, isomorphic 
ones— will do. If the other domain is more intuitively accessible than the original domain, or 
more easily investigable, then substituting the domain of a theory by another will constitute a 
methodological advantage. This strategy is widely popular in mathematics (e.g. analytic 
geometry) and accounts for many of its applications. In general, domains are not strictly 
isomorphic but share enough formal properties for the theory of one to be useful for 
investigating the (formal) properties of the other. Even empirical domain, conveniently 
abstracted and idealized, can be replaced by mathematical domains in the mathematical 
sciences of nature. 

As just said, to posit a mathematical structure, it is sometimes convenient to posit a 
domain of objects as the objectual correlate (the extension) of some concept or other and 
consider its structure idealiter. One can in this case access the structure of the domain via the 
concept that delimits it. Material structured domain serve, via their ruling concepts, as means 
of epistemic access to the ideal structure they instantiate. For example, one can access the 
ideal ω–structure, the structure of the domain of natural numbers, by accessing the concept of 
natural number via conceptual intuition. The properties of the ideal ω–structure, however, do 
not depend on the material nature of the domain that instantiates it, numbers proper or 
number–like entities.      

By quantifying conveniently idealized physical magnitudes, such as time, space, 
temperature, volume, pressure, and a plethora of others, quantitative relations among 
magnitudes can be expressed in terms of mathematical formulae that can be used to predict 
future behavior of physical systems. With a proviso, that the original magnitudes remain the 
domain of interpretation of mathematical formulae. Similarly, one can interpret geometrical 
constructions in terms of numerical operations and use algebraic manipulations, not 
geometrical constructions, to solve geometrical problems. 
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The fact that mathematical theories can only capture and express formal–structural 
properties of their domains, or any others formally similar to them, and that the applicability 
of mathematics in some domain depends on the formal–structural properties of this domain 
being in some relevant way similar to those expressed by some mathematical theory, makes 
the material nature of mathematical objects, such as number, irrelevant, either for theoretical 
or practical purposes. In mathematics, matter does not matter. 

One could say that mathematics is not really about mathematical objects but about the 
formal structures they instantiate. Although there are mathematical objects, mathematics is 
interested in them only as supports of structure, and “invented” structures are as good in 
theory and in applications as those instantiated in pre–existing structured domains. 

In short, the practical utility of mathematics does not imply that there are objectively 
existing and objectively independent domains of mathematical objects that happen to be 
structured as their theories determine. Mathematical theories are in some sense useful 
fictions. Their utility depends on the existence of relevant logical relations between structures 
of theoretical interest, often empirical structures, and mathematical structures that may not 
correspond to anything existing. Mathematics need not, necessarily, to be true in the sense of 
describing an independent realm of abstract objects to be useful in science (although it may). 
The scientific usefulness or even indispensability of mathematics has no ontological 
consequences. This, I believe, undermine indispensability arguments purporting to prove 
mathematical Platonism from the essential role mathematics plays in science. 

 

8. The mathematization of natural science raises important ontological questions concerning 
reality. Here are some: what should we understand by empirical reality (or, for short, nature), 
that which we can in principle experience with our senses, that is, perceptual reality, some 
transcendent reality that “causes” perceptions or, still, the perceptually inaccessible 
mathematical manifolds that replace perceptual reality with which science, insofar as it is a 
mathematical science, is immediately concerned? Can transcendent reality be itself a 
mathematical manifold, which, supposedly, we can at best access only imperfectly through the 
senses? If not, what is mathematics doing in science? 

The mathematical theory of empirical reality is, obviously, not directly concerned with 
perceptual reality, only with mathematical “models” of it. Perceptual reality must be 
intentionally lapidated, elaborated, before becoming a suitable subject of scientific 
consideration. The question is whether these mathematical models are reality itself or only 
useful methodological devises to deal with it. Are mathematical models of perceptual reality 
methodological tools or aspects of reality itself as disclosed to reason?   

Mathematization is a complex operation and it would be enlightening to consider it again, 
with some concrete examples this time. 

The first moment in the constitution of mathematical models of reality is subrogation, i.e. 
the substitution of objects of perception by mathematical representatives or surrogates. For 
example, ideal geometrically well–determined abstract spatial extensions “physically” 
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characterized by numerically expressible objective properties such as mass, volume, 
temperature, electrical conductivity, etc., in place of real physical bodies and the immediate 
sensorial impressions they produce. Color and like properties, for example, deemed subjective, 
are usually dismissed as unworthy of playing a role in objective science if they cannot be 
correlated to objective quantifiable properties in terms of which they can be “explained” away. 
The color of a body, for instance, “reducible” to the frequency of the electromagnetic 
radiation emitted by the body that reaches the eyes. 

Mathematization requires a considerable amount of intentional action on the raw 
material of perception, the most evident being abstraction and idealization, which I 
sometimes refer to as cutting and polishing, respectively. For example, if one is interested in 
the movement of bodies in space (kinematics) from a mathematical perspective, that which 
the body is made of, its matter or substance, is irrelevant; the scientist can ignore or abstract it 
out. If changes in the state of movement and their causes are of concern (dynamics), one can 
still abstract from the substance of the body, provided that we attach to it a property (which 
can or cannot depend on the state of movement) —its mass— that intermediates between 
causes (forces) and effect (acceleration). In both cases, if the dimensions and geometrical 
properties of the geometric extension to which the body was reduced is irrelevant, it can be 
idealized as a massive point occupying the “center of mass” of the body, itself an ideal, 
geometrical point that does not belong in real space, only in the geometrical space where the 
“body” —or better, its geometrical ghost —now lives.  

Abstraction consists in “separating” an aspect of the body —the cutting—, for example, its 
shape, from the rest of it. Of course, not in reality or “in the mind”, but for the sake of 
theoretical considerations. Abstraction is a logical operation. Idealization —the polishing—, 
on its turn, consists in a process of exactification; for example, the real shape of the body, 
which is an object of perception, not geometry, occupying a place in real space, being 
substituted by an exact geometrical form supposed to be materialized in the body but 
belonging in mathematical, not real space. 

There is a considerable number of presuppositions involved in the process. For example, 
that the mass of bodies varies continuously and can be precisely expressed in terms of a 
standard mass as real numbers. Needless to say, this presupposition does not express a 
perceptual fact; it is simply taken for granted until a force majeure, a chance in theoretical 
frame, for example, forces science to give it up.9 By quantifying the concept of mass; i.e. by 
considering it only in terms of quantitative relations, the content of the concept —what it is, 
its qualitative aspects— is pushed out of scientific considerations, the quantitative aspects 
only remaining.   

Maybe the most important goal of science is the search of regularities in nature that allow 
the correct prediction of its future behavior. In the mathematical science of nature, this is 
done indirectly. A certain correspondence is established between perceptual reality and 

 
9  Science, for instance, had to give up the presupposition that the energy of a system can in general 

take any value in a continuum of possible values.  
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“mathematical models” so that we can investigate formal aspects of perceptual reality by 
investigating their models by appropriate mathematical methods. As already observed, this 
process happens against a background of presuppositions. Mathematical models are 
mathematically exactified quasi–isomorphic copies of selected abstract aspects of perceptual 
reality. At the most basic level, they are idealizations of the perceptually discernible formal 
structure of perceptual reality (I call it mathematical–perceptual reality), but can be further 
elaborated mathematically beyond even the possibility of perception.   

Since only the formal aspects of perceptual reality find a way into scientific reasoning, it is 
methodologically advisable to ignore the matter of perception and consider only its form, 
which can be mathematically idealized and submitted to mathematical scrutiny. One can now 
look for mathematical regularities in the mathematical manifolds representing in ideal form 
abstract aspects of perception and go back to perceptual reality by the inverse operations of 
subrogation. 

One can credit Galileo, among others, for discovering this very efficient way of 
investigating empirical reality. Suppose, for instance, that we are, as he was, interested on how 
the space travelled by a free–falling body relates to the time that takes it to complete the fall. 
We can simply measure both magnitudes and try to find out a mathematical expression 
correlating both sets of measurements. This requires the operation of mathematization 
described above. But notice, we would not be describing perceptual regularities, but 
regularities in a mathematical substitute of perceptual reality. Once we find that distance 
travelled depends quadratically on time (s = ct2, where c is a numerical constant), we can use 
this formula to predict the time it would take any free–falling physical body to cover any 
distance, not only those we have actually measured.10 But to go from the mathematical model 
to perceptual reality symbols must be given a material content, i.e. re–interpreted in 
perception. For this we usually resort to the standard semantics, which remains in place. 

As I have notice before, to put the prediction to empirical test requires more than simply 
checking it against raw perception. The prediction is not tested in perceptual experience, but 
in its surrogate, the mathematical model. Upon measuring one of the variables, say, time, a 
real number must be selected to represent it. There are literally infinitely many possible 
choices within a fuzzily determined interval, the choice is arbitrary within this interval. This is 
often misinterpreted as an approximation to the truly real value of the variable, as if the 
mathematical were the real and perception only an attempt, doomed in principle to failure, to 
capture it.  

Now, once a number is chosen to represent time, it can be substituted in the formula and 
the corresponding value of distance be determined by algebraic manipulations. The number 
determined via the formula can now be compared with the number chosen to represent the 
value obtained in a direct measurement; the formula passes the test if these numbers are 
“sufficiently close”. One does not compare the formula directly with perception, but with the 

 
10  Of course, this generalization involves a presupposition concerning regularity in the behavior of 

nature. 
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mathematical substitutes we put in place of perception; theoretical predictions are not validated 
in perception, but in mathematical surrogates of it.          

But once the first mathematical draft of perception is in place, there is no limit to how 
much it can be mathematically enriched. Instead of wanting simply to establish a correlation 
between time and space in the free falling of heavy bodies, for instance, one could ask why 
they fall. Aristotle had a quick answer: because they are eager to get to their natural place, the 
center of the earth in case of heavy bodies (i.e. bodies that fall), which coincided with the 
center of the universe. From this, he concluded, quite reasonably but wrongly, that heavier 
bodies would fall faster than lighter ones. Newton, who only considered inertial movements as 
natural, reasoned differently; for him, acceleration demands a cause, a force acting upon it. Of 
course, no such “force” is directly detectable in perception; it is a theoretical contribution that 
can only be given a content in terms of mathematical relations: force is directly proportional 
to acceleration, the (inertial) mass of the body being the constant of proportionality. The 
second law of Newton is in fact an operational mathematical definition of force. Once 
perceptual reality has been reduced to a mathematical manifold, there is no reason why purely 
mathematical entities like forces could not be introduced therein. As to the precise nature of 
forces, that which corresponds to them in a possible direct perception, Newton preferred not 
to advance hypotheses: hypotheses non fingo, he said. 

Examples of such theoretical constructs are plenty, fields, potentials, state–functions, wave 
function, etc. etc. Clearly, they are not elements of perceptual reality, nor are they necessarily 
required for an adequate treatment of the phenomena at hand; the scientist may choose other 
approaches. For example, instead of massive bodies exerting forces on each other in a 
Euclidean space (an Euclidean physical space being also, obviously, an idealization) they may 
move by inertia in a non–Euclidean space whose structure depends on the distribution of the 
bodies in space. The history of physics is the history of the dematerialization of nature, the 
stuff of perception either put aside or given a mathematical correspondent. Only the form of 
perception survives, which can be idealized in mathematical form and mathematically 
enriched arbitrarily.        

Here, things can get very interesting. How do purely mathematical theoretical constructs 
relate to perception? There are two obvious possibilities; first, they do not correspond to 
anything at all in perception, they have only a role interna corporis in the organization of the 
theory: by allowing, for example, the derivation of theoretical predictions that are in principle 
verifiable in the standard semantics (an example would be the wave function of quantum 
mechanics). Second, they can themselves be given a material content, either in the standard 
semantics or in another that extends it. 

Perceptual reality provides the standard context of interpretation of the mathematical 
models that take its place in mathematized natural science; the former is to the latter as matter 
is to (idealized) form. However, after mathematical idealizations of abstract aspects of 
perceptual reality, i.e. mathematical–perceptual reality, are, as they can be, mathematically 
enriched, theoretical entities can appear that do not or cannot, even in principle, correspond 
to anything in perceptual experience. The question then presses itself: can they be made to 
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correspond to something in empirical reality? The answer to this question, however, is beyond 
the power of mathematics and is left for the ingenuity and creativity of the scientist. At best 
mathematics can display interesting formal possibilities whose material reality is completely 
undetermined.  

Mathematical theories of empirical reality are tested by verifying whether the purely 
formal mathematical predictions of the theory can be translated back, via the standard 
semantics, into true assertion in perceptual reality, whenever these predictions can in fact be 
so translated. A second, higher–level test, is by verifying whether perceptual reality can itself 
be extended to fit mathematical “predictions” that are not translatable into standard 
semantics. If perceivable consequences of the theory (in the standard semantics) are not 
perceived, the whole theory is under threat if one cannot identify and fix what is wrong with it. 
As Weyl claimed, a scientific theory stands or falls as a whole. On the other hand, if all the 
theoretical predictions of the theory are actually verified, if only provisionally, this does not 
imply that all theoretical constructs of the theory have material reality. Scientific theories exist 
where “imaginary” entities only play a role interna corporis. 

Now, if “imaginary entities” can be given a material content in an extension of standard 
semantics, one can say that mathematics played a heuristic role in science, but only at the 
purely formal level. The actual semantic extension falls completely outside the mathematical 
domain; by itself, mathematics is heuristically barren. 

In face of all that, how can we answer our original question: what are we entitled to call 
(empirical) reality, perceptual reality or its mathematical idealization? 

One may, of course, introduce a tertium, a transcend reality that somehow manifests itself 
in perception but is not intrinsically mathematical. However, if we can have an undistorted 
perception of transcendent reality, we can simply identify both realities, perceptual and 
transcendent. If not, a transcendent reality has no place in science. What if perception does 
not simply mirror transcendent reality, but instead distorts it beyond repair? In fact, we know 
this to be the case, perception bears to a considerable extent the stamp of the perceiver. As 
already emphasized, perceptual reality is a construct; it is how we happen to perceive a 
transcendent reality that may, in itself, be beyond perceptual reach (if it makes sense to say 
that transcendent reality has an intrinsic way of being expressible in our conceptual systems, 
even though not capable of manifesting itself perceptually). Perceptual reality may be only a 
perspective of something out there that is heavily conditioned by the nature of our perceptual 
system, but it is all that we have.    

On the other hand, as already sufficiently emphasized, mathematical models of perceptual 
reality, mathematical–perceptual reality or their mathematical extensions, are only 
methodological devises that are certainly useful for the investigation of formal aspects of 
perceptual reality but are not reality. In short, and here is my answer, nature is not a 
mathematical manifold, although it can be conveniently studied by mathematical methods 
insofar as science is only concerned with its formal–structural aspects. Now, to the extent that 
a transcendent reality beyond perceptual reach has no place in science and we cannot take for 
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reality what is only a methodological devise, the conclusion imposes itself that empirical 
reality is perceptual reality and its abstract structure the true object of science. In the words of 
Heisenberg (Heisenberg 1959): “the science of nature does not deal with nature itself, but with 
nature as man considers and describes it” and those of Weyl (Weyl 1952, p. 26) talking about 
physical geometry: “… our conceptual theories enable us to grasp only one aspect of the 
nature of space, that which moreover, is most formal and superficial.” 
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